MODELACION DE LA DISPERSION DE LOS CONTAMINANTES ATMOSFERICOS EMITIDOS POR LA REFINERIA «NIKO LÓPEZ» Y FUENTES CERCANAS

AUTORES: ARNALDO COLLAZO ARANDA
OSVALDO CUESTA SANTOS
ANTONIO WALLO VAZQUEZ

Centro de Contaminación y Química Atmosférica. Instituto de Meteorología. E-mail: aecollazo@yahoo.com

RESUMEN

La modelación de la calidad del aire puede ser vista como un método para la obtención de información de esta sobre las bases de que conocemos las emisiones, y los procesos atmosféricos que conducen a la dispersión, transporte, transformación química del contaminante y deposición desde la atmósfera. En el presente trabajo se hace una simulación y análisis de la dispersión de los contaminantes emitidos por la Refinería «Niko López» y de las centrales termoeléctricas de Regla y Casablanca, aplicando el modelo de dispersión descrito en la Norma Cubana.

Introducción

Los modelación de la dispersión de los contaminantes en la atmósfera se han convertido en una herramienta para el análisis en muchas evaluaciones de calidad del aire fundamentalmente por las siguientes razones:

- Constituyen una fotografía de la calidad del aire en una zona, que puede ser obtenida en contraste a las limitaciones en la cobertura espacial de las mediciones.
- La relación entre las concentraciones y las emisiones que causan estas concentraciones puede ser halladas explicitamente y cuantitativamente por modelación, lo cual es más importante para apoyar el manejo de la calidad del aire.
- Los modelos son la única herramienta disponible, si va a ser investigado el impacto sobre la calidad del aire de la instalación de nuevas fuentes y escenarios de emisión futuros.

Los principales factores meteorológicos que a escala local influyen en el transporte y dispersión de contaminantes son la rapidez y dirección del viento, el nivel de turbulencia presente en la atmósfera y la existencia de limitaciones a la dispersión vertical por efecto de capas de inversión térmica (Berlyand, 1975; López, 1978; Alvaréz, 1990). Para los procesos de remoción de contaminantes de la atmósfera son muy importantes las diferentes variables meteorológicas especialmente la lluvia. Estos procesos contribuyen al traslado de la contaminación hacia otros medios (suelos, vegetación, construcciones etc.) donde se producen los efectos e impactos. Como es usual, para los tratamientos de dispersión atmosférica la rosa de vientos de la estación Casablanca debe ser corregida para la eliminación de «preferencias» y la redistribución de calmas y vientos muy débiles entre todos los rumbos mediante un criterio que depende de la frecuencia general y por rumbos de esas cantidades. En esos casos la concentración máxima se observa para determinado valor de la rapidez del viento, conocida como rapidez peligrosa del viento.

En el presente trabajo se hace una simulación y análisis de la dispersión de los contaminantes emitidos por la Refinería «Niko López» y de las centrales termoeléctricas de Regla y Casablanca, aplicando el modelo de dispersión descrito en la Norma Cubana (39:1999) Atmosfera. Requisitos Higiénicos - Sanitarios.

Materiales y Métodos

El modelo utilizado es el establecido por la Norma Cubana de Calidad del Aire (NC 39: 1999), cuya formulación principal es la siguiente:

\[C_m = \frac{A \cdot M \cdot F \cdot m \cdot n}{H^2 \cdot \sqrt[3]{V \cdot \Delta T}} \quad [\text{mg/m}^3] \]

\(C_m \) = Es el valor máximo probable de la concentración de un contaminante expulsado a la atmósfera.

\(A \) = Constante de estratificación térmica atmosférica que define las condiciones de difusión de los contaminantes del aire.

\(M \) = Flujo máximo de la sustancia contaminante expulsada al aire.

\(F \) = Coeficiente de precipitación de la sustancia contaminante en el aire.

\(m \) y \(n \) = Coeficientes de condiciones de emisión a la atmósfera de la mezcla de gases y aire.

REVISTA CUBANA DE METEOROLOGÍA / Vol.10 / No.1 / 2003 29
\[H = \text{Altura de la chimenea sobre el nivel del suelo.} \]
\[\Delta T = \text{Diferencia de temperatura entre la mezcla de gases y aire.} \]
\[V = \text{Caudal total de la mezcla de gases y aire.} \]

La concentración máxima como resultado de esta ecuación es originada bajo condiciones meteorológicas desfavorables y para condiciones de terreno uniforme y plano. Se utilizó la rosa de los vientos de la estación Casablanca que es representativa de la zona de estudio para representar la dispersión de los contaminantes por cada rumbo de viento. En la Figura 1 se observa el área de estudio la cual abarca en detalle el municipio de Regla donde se encuentra ubicada la Refinería «Nico López» y el reparto Bahía que es limitrofe con la misma, también se aprecia en el área las principales fuentes contaminantes.

Se utilizará la modelación de la dispersión de contaminantes para proporcionar estimados de las concentraciones a partir de las fuentes expulsoras principales externas y de la refinería. Se utilizará un mapa de la zona con rejilla de 0,25 por 0,25 Km para la representación gráfica de las concentraciones (Cuesta et al., 2001).

![Figura 1. Esquema de las Estaciones de monitoreo y fuentes contaminantes](image)

Discusión de los Resultados

La dispersión atmosférica es un método de control que tiene numerosas ventajas, especialmente para procesos industriales, los cuales pueden ser variados tomando en cuenta periodos favorables cuando las condiciones de dispersión son tan buenas que los contaminantes puedan distribuirse ampliamente y obtener bajas concentraciones o tan desfavorables que se puedan conocer las concentraciones máximas que puedan afectar la zona en estudio.

Resultados de la modelación de la dispersión de contaminantes en la Refinería.

En la Tabla 1 se muestran las Concentraciones Máximas estimadas para cada compuesto estudiado según los valores de emisiones monitoreados de forma real cuando el proceso productivo se encontraba a un 80 % de su capacidad y un 100%, respectivamente. Dado que las mediciones reales de las emisiones se realizaron estando la refinería a un 80% de su capacidad todos los estimados se realizaron a partir de comparaciones en el ciclo productivo al 80 y 100%. Según los valores hallados encontramos que el dióxido de azufre y el dióxido de nitrógeno son los compuestos cuyas concentraciones máximas estimadas superan las concentraciones máximas admisibles (Cma) de estas sustancias establecidas por la Norma Cubana para plazos de 20 minutos siendo superiores para el primer caso 5.5 veces y para el dióxido de nitrógeno de 11.4 veces. Por su parte las restantes sustancias contaminantes los valores máximos hallados resultan inferiores al valor máximo admisible establecido.
Tabla 1. Valores de concentraciones estimados según el modelo DISPER en la Refinería «Nico López»

<table>
<thead>
<tr>
<th>Contaminante</th>
<th>Cma (mg/m³)</th>
<th>Concentración máxima estimada (mg/m³) (100%)</th>
<th>Concentración máxima estimada (mg/m³) (80%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>0.5</td>
<td>2.73</td>
<td>2.19</td>
</tr>
<tr>
<td>NO₂</td>
<td>0.085</td>
<td>0.97</td>
<td>0.77</td>
</tr>
<tr>
<td>PST</td>
<td>0.5</td>
<td>0.17</td>
<td>0.13</td>
</tr>
<tr>
<td>CO</td>
<td>5.0</td>
<td>0.89</td>
<td>0.72</td>
</tr>
<tr>
<td>Distancia Máxima (m)</td>
<td>-</td>
<td>667</td>
<td>667</td>
</tr>
<tr>
<td>Velocidad Peligrosa (m/s)</td>
<td>-</td>
<td>3.4</td>
<td>3.4</td>
</tr>
</tbody>
</table>

En la Figura 2 se aprecian las concentraciones calculadas para el SO₂ al 80% según los valores representados, toda el área de estudio se encuentra afectada por concentraciones por encima de la concentración máxima admisible. El valor máximo absoluto es de 2.19 mg/m³ y ocurre a una distancia máxima de 667 metros que lo sitúa muy cerca del límite entre la refinería y la zona urbana colindante. El NO₂ presenta valores superiores a la concentración máxima admisible en toda el área de estudio, el máximo es de 0.77 mg/m³, esto implica que se sobrepasa la norma cubana unas 8 veces y esto ocurre a unos 700 metros del área central de la refinería. Los otros dos compuestos presentan concentraciones aceptables para la calidad del aire en la zona. Las concentraciones para el SO₂ cuando la Refinería se encuentra al máximo de su ciclo productivo actual (100%) supera en más de 5 veces la concentración máxima admisible y presenta uno de sus máximos sobre la zona urbana de Regla en el cual los valores estimados superan en más de cuatro veces la norma cubana de calidad del aire. Es necesario señalar que la concentración máxima admisible se supera en todo el área de estudio en un diámetro aproximado de más de 4 Km a partir del centro de la Refinería «Nico López».

Resultados de la modelación de la dispersión de contaminantes en la Refinería y fuentes cercanas.

Como parte del trabajo de cálculo de la dispersión de contaminantes también se trabajó con las expulsiones asociadas a otras fuentes potentes ubicadas en la cercanía de la refinería, pues estas también influyen en la zona de estudio, de forma tal que incrementan la incidencia de los contaminantes medidos durante los experimentos realizados y en los cálculos realizados a través de la modelación. Las fuentes potentes analizadas fueron la Central Termoeléctrica Antonio Maceo (CTE Regla) y la Central Termoeléctrica Frank País (CTE Casablanca).

Las concentraciones calculadas para el SO₂ al 80%, esto incluye las emisiones de la refinería y de las fuentes potentes cercanas (CTE Regla y Casablanca) donde toda el área de estudio se encuentra afectada por concentraciones por encima de la concentración máxima admisible. El valor máximo absoluto es de aproximadamente 2.80 mg/m³ y ocurre en la zona cercana a la CTE Casablanca y sobre la Bahía. Concentraciones por encima de 2.0 mg/m³ ocurren sobre la refinería y gran parte del poblado de Regla. Por lo que valores hasta cuatro veces por encima de la Cma pueden ocurrir en esta zona urbana.

Los valores encontrados para el NO₂ al 80% aparecen reflejados en la Figura 3, los máximos valores se presentan en la zona donde esta enclavada la CTE Casablanca y continúan por el litoral hasta penetrar en la zona del emboque en Regla. Este máximo representa aproximadamente concentraciones que superan la Cma en 8,4 veces. Las concentraciones calculadas de NO₂ presentan valores por encima de la norma sobre toda la zona de estudio. Queremos recordar que la norma cubana de referencia es para las concentraciones instantáneas (20 minutos), en correspondencia con la salida del modelo de dispersión utilizado.

Figura 2. Cálculo de las concentraciones para el SO₂ (80%). Refinería.
Los resultados de la modelación para las PST y el CO al 80%, muestran que estos contaminantes no superan sus respectivas Cma, pero ambos muestran un patrón de distribución similar al NO₂.

En general el NO₂ es el contaminante que más efectos nocivos debe provocar según los cálculos realizados. Es necesario señalar que la concentración máxima admisible se supera en todo el área de estudio en un diámetro aproximado de más de 4 Km a partir del centro de la Refinería «Nico López».

Los resultados de la modelación nos permiten aumentar nuestros conocimientos sobre los problemas vinculados a la contaminación atmosférica en el área de estudio, específicamente sobre la distribución de los diversos contaminantes emitidos por las industrias y según las condiciones meteorológicas más desfavorables para la dispersión de los mismos.

Conclusiones

En general tenemos que el NO₂ y SO₂ son los contaminantes que presentan valores por encima de la Cma según los cálculos realizados. Debemos recordar que estos cálculos se realizaron para las peores condiciones de dispersión de los contaminantes. Según los valores hallados encontramos que las concentraciones máximas admisibles (Cma) se superan 11,4 y 5,5 veces para el caso del NO₂ y SO₂ respectivamente. El PST y el CO presentan concentraciones aceptables para la calidad del aire en la zona según la norma cubana.

Los valores encontrados para el NO₂, muestran que los máximos valores se presentan en la zona donde está enclavada la CTE Casablanca y continúan por el litoral hasta penetrar en la zona del emboque en Regla. Este máximo representa aproximadamente concentraciones que superan la Cma en 8,4 veces.

Las concentraciones para el SO₂ cuando la Refinería se encuentra al máximo de su ciclo productivo actual (100%) supera en más de 5 veces la concentración máxima admisible y presenta uno de sus máximos sobre la zona urbana de Regla en el cual los valores estimados superan en más de cuatro veces la norma cubana de calidad del aire. Es necesario señalar que la concentración máxima admisible se supera en todo el área de estudio en un diámetro aproximado de más de 4 Km a partir del centro de la Refinería «Nico López».

En la actualidad las medidas para mejorar las condiciones de la calidad del aire en la zona deben encaminarse hacia las industrias de la región, el parque automotor y otras emisiones provocadas en las viviendas por el uso de combustible doméstico.

Bibliografía

Alvarez, R. (1990): Caracterización de la dispersión de contaminantes en la zona Minero - Metalúrgica de Moa. Informe Resultado. IDICT, Instituto de Meteorología, CITMA.

ABSTRACT:
Air pollution models can be seen as a method for the obtaining of air quality information on the bases that we know the emissions, and the atmospheric processes that drive to the dispersion, transport, pollutant chemical transformation and deposition from the atmosphere. In this paper are presented a simulation of the concentrations in the area of Nico Lopez Refinery and Casablanca and Regla plant power applying the dispersion model of the Cuban Air Quality Standard.

Palabras Clave:
Dispersión de contaminantes, atmosféricos, SO₂, NO₂.