El Dique Sur de La Habana (Cuba) y su influencia en el comportamiento de elementos climáticos seleccionados.

Autores: A. V. Guevara, A. Campos, A. León, R. Vega

Centro Nacional del Clima. Instituto de Meteorología

Resumen

El Dique Sur de La Habana (DSH) es una obra hidrotécnica situada en la parte suroccidental de Cuba y su construcción ha provocado un importante impacto ambiental en el ecosistema circundante. El presente artículo pretende esclarecer si el Dique ha influido también en el comportamiento del clima en la zona adyacente a él. Utilizando la comparación simple de las principales variables climáticas, así como los análisis de las curvas de doble masa, tendencias y puntos de cambio de las series, se constató en general un incremento de las precipitaciones, y del número de días con lluvia y tormenta en las estaciones meteorológicas del área en estudio, sobre todo en las más cercanas al Dique. Los resultados obtenidos indican el probable impacto del DSH en el clima local, aún cuando en ellos se encuentren reflejadas, además, las tendencias regionales y globales del clima.

Palabras claves: impacto climático, variaciones climáticas locales, puntos de cambio, tendencia.

Introducción

El Dique Sur de La Habana (DSH) es una importante obra hidrotécnica situada en la porción suroeste de la provincia de La Habana, en el occidente de Cuba. Comenzó a edificarse en 1985 y no es más que un muro de contención de arcilla, con una altura de 1 - 1.5 m sobre el nivel del mar, cuyo eje corre a unos 500 m paralelo al litoral, desde el poblado de Playa Majana (municipio de Artemisa) hasta las inmediaciones de Batabanó, en una longitud de 57 Km. En la región, la costa es sumamente baja, con una plataforma marina amplia, de poca profundidad. La morfología costera es de tipo acumulativo marino, con una llanura litoral cenagosa, de pendiente 0° - 1°, que sirve de asiento a formaciones vegetales de manglar, lagunas costeras y ciénagas de herbazal. En determinados tramos se observa la acumulación de arenas conformadas por residuos de caracoles y otras especies. Todos ellos, junto a los sedimentos terrígenos arrastrados por las escasas vías de drenaje natural y los canales artificiales existentes, brindan los aportes biogénicos propios del lugar.

La ejecución del DSH tuvo como objetivos fundamentales lograr una disminución del escorrentío superficial proveniente de la Cuenca Sur de La Habana, crear un espejo de agua capaz de fortalecer las cuencas subterráneas, detener la intrusión salina con el fin de amortiguar la salinidad del acuífero y utilizar el agua disponible para actividades agrícolas, el consumo de la población, etc. Sin embargo, su construcción también ha provocado impactos ambientales de interés en el ecosistema circundante, sobre todo en los recursos forestales, hídricos, costeros - marinos y en la situación higiénico - sanitaria local. La causa de estos impactos se ubica en la carencia de un manejo integrado de la obra, lo cual ha hecho más vulnerable a la zona costera.

La complejidad del problema se acentuaba dado que el sur de La Habana viene sufriendo profundas modificaciones medioambientales desde hace más de tres siglos. Inicialmente predominaba allí la ciénaga con manglar en el litoral y el bosque de maderas duras en las partes más altas. Desde el siglo XVII el paisaje natural comenzó a sustituirse por el cultivo de la caña de azúcar y frutos menores, que luego se extendió a la actividad ganadera (vacuna, porcina y avícola). El desarrollo económico trajo aparejado también la tala de la franja protectora de manglaje rojo en la línea de costa, la densificación de la red de canales para la extracción de madera y el aumento de la accesibilidad a la zona. En consecuencia, los paisajes dominantes en la actualidad se agrupan dentro de la categoría de fuertemente modificados (Instituto de Geografía Tropical, 1999).

Con los antecedentes anteriores, y sobre la base de la situación encontrada al aplicar al DSH los mecanismos de control ambiental en vigor (Ley N° 81 del Medio Ambiente), en 1999 se decidió emprender un estudio especial integral en la zona. Dentro de los objetivos del mismo estuvo la detección de variaciones significativas en las condiciones climáticas locales, que pudieran tener asociación con la construcción del Dique y la aparición de un área de aguas embalsadas de aproximadamente 17 Mha (Fig.1). En el presente artículo se exponen los principales resultados de dicho estudio, en lo referido a la presunta alteración del clima local por las causas antes mencionadas.
Materiales y métodos.

Como unidad espacial de estudio se definió el área correspondiente a los municipios de Artemisa, Alquizar, Güira de Melena, Quivicán y Batabanó, por los cuales corre el DSH y donde se han producido los mayores impactos al medio. También fue incluido en ella el resto de los municipios de la costa meridional de la provincia de La Habana (Melena del Sur, Guíñes, San Nicolás de Bari y Nueva Paz) en atención a su cercanía a la obra y a las estrechas interacciones que mantienen con los primeros, desde el punto de vista físico - geográfico, socioeconómico y medioambiental (Fig.2). Como dato de interés se tiene que el área de influencia directa del Dique Sur abarca una extensión territorial de 283 Km² y su población se estima en 22 080 habitantes (Instituto de Geografía Tropical, 1999).

En la zona están enclaveadas las estaciones meteorológicas de Güira de Melena, Batabanó, Melena del Sur y Guíñes, todas pertenecientes a la red climatológica del Instituto de Meteorología (INSMET) de Cuba (Fig.2), las cuales fueron seleccionadas para el estudio. A priori, se consideró que las mismas registrarían cualquier cambio en las condiciones climáticas en el área adyacente al DSH, pues cuentan con series de datos confiables y registros que cumplen con los requisitos establecidos por la Organización Meteorológica Mundial (OMM). Además, en ellas no se han reportado cambios significativos en los métodos de observación ni en su entorno inmediato en los últimos 25 años; sólo Batabanó sufrió una rebajación en 1985 - 1986, al ser trasladada a 3 Km de la costa. Las estaciones de Casablanca y Santiago de las Vegas, ambas en la vecina provincia de Ciudad de La Habana, y bien alejadas de la posible influencia directa del Dique, se tomaron como referencia macro y mesoclimática: la primera refleja muy bien las variaciones climáticas regionales (Vega et al., 1998) mientras que Santiago de las Vegas se identifica con el clima del interior de las provincias habaneranas. Se asumió la representatividad de las estaciones meteorológicas en aproximadamente un radio de 20 - 50 Km, según lo establecido por OMM (1990).

Sólo se trabajó con la información proveniente de la red climatológica nacional, pues no fue posible realizar mediciones especiales de los elementos del clima en los municipios del área afectada.

Toda la información climatológica necesaria fue extraída de los archivos del Centro del Clima, en el INSMET, y su validación fue realizada siguiendo las recomendaciones de la Organización Meteorológica Mundial (OMM, 1990).

En la primera parte del trabajo se muestran las características generales del clima de la región, antes de la construcción del DSH. En la segunda, la atención está centrada en la variabilidad climática local.

Como hipótesis a demostrar, se planteó la siguiente: Se han producido variaciones en el clima de la zona, a consecuencia de los cambios acaecidos en el medio natural, entre los que pudiera incluirse la construcción del DSH.
La verificación de esta hipótesis se ejecutó mediante la aplicación de tres métodos fundamentales:

- Estudio de la homogeneidad de las series de las mismas variables, a través del análisis de sus curvas de doble masa (OMM, 1990) en el período 1974 - 1997.
- Análisis de las tendencias de las series de las variables climáticas y sus posibles puntos de cambio, durante el mismo período. Para ello, se aplicaron las pruebas de Mann-Kendall (Sneyers, 1992) y de Pettitt (Vannitsem y Demaree, 1991).

Resultados y discusión.

Se pudo establecer que el clima de la zona está determinado por distintos factores, dentro de los cuales se identificaron como los más relevantes:

- Régimen de radiación solar: Por su latitud geográfica, el territorio recibe altos valores de radiación durante todo el año, lo que tiene implicación en el carácter cálido de su clima. En el contexto regional, este elemento presenta una diferenciación latitudinal apreciable (magnitudes más bajas en el centro, en aumento hacia las costas), pero con diferencias longitudinales despreciables.

- Circulación atmosférica: Condiciona la presencia de dos temporadas bien diferenciadas en el clima de la región:
 a) Poco lluviosa y fresca: Se extiende de noviembre a abril. Predomina la influencia de organismos y fenómenos de la circulación atmosférica extratropical (anticiclones continentales migratorios, frentes fríos, bajos extratropicales, etc.).
 b) Lluviosa y calurosa: Va desde mayo hasta octubre. Está regida por la influencia más o menos cercana del Anticiclón Azores - Bermudas o del Atlántico Norte, lo que favorece en una mayor o menor medida, la actividad de chubascos y tormentas eléctricas. Otros sistemas típicos de la temporada son las ondas tropicales, hondonadas y ciclones tropicales, asociados con la ocurrencia de abundantes precipitaciones.

Factores físico - geográficos:

- a) Su ubicación en la región occidental de Cuba garantiza una mayor exposición a fenómenos tales como frentes fríos, bajos extratropicales y ciclones tropicales.
- b) El carácter llano del territorio permite que la brisa marina de las costas norte y sur penetre hasta el interior y conlleva a la formación de una zona de convergencia central, la cual desempeña un papel clave en la circulación atmosférica local y en el desarrollo de procesos muy vinculados con la ocurrencia de lluvia en la región.

c) Dada la influencia marina que recibe, el mecanismo de la brisa de mar y de tierra está presente en la zona, aunque es menos poderoso que en la costa norte de las provincias habaneras.

d) La zona costera se caracteriza por una extensión de aguas someras con pendientes muy suaves que favorecen la penetración del mar y ante surgencia ciclónica se producen inundaciones peligrosas. De aquí su alta vulnerabilidad ante el azote de fenómenos peligrosos como los ciclones tropicales y los eventos "sures" (Mitraní, 2000).

En la Tabla 1 se resume el comportamiento de las variables climáticas seleccionadas en el área de estudio (línea base), así como los cambios observados en ellas durante el período posterior a la construcción del DSH. Las diferencias más notables se advierten en las variables representativas de los regímenes térmico y de precipitaciones, al igual que en la cantidad de días con tormenta. En menor medida, también se aprecian para la humedad relativa y el viento.

Las variaciones detectadas pudieran haber provocado ya la pérdida de la homogeneidad de las series climáticas correspondientes. Para esclarecer dicha interrogante, se efectuó el análisis de las curvas de doble masa de las variables y estaciones involucradas en el problema. Algunos de sus resultados más interesantes se presentan en las Figs. 3 y 4. Batabanó fue la estación meteorológica que registró mayor cantidad de variables (5) con anomalías en su comportamiento: temperatura mínima, oscilación térmica diaria, totales mensuales de precipitación, cantidad de días con lluvia y con tormenta. A continuación, le siguieron Melena del Sur y Güira, con 4 variables (la temperatura mínima no arrojó resultados en aquellas estaciones). El cambio de pendiente en la curva de doble masa, criterio utilizado para determinar el momento de pérdida de la homogeneidad de la serie, ocurre a mediados del período en estudio (1985 - 1988), o al final del intervalo (inicios de la década de los 90). En la mayoría de los casos, las series no regresan a su comportamiento inicial.

A fin de completar los procedimientos anteriores y definir con mayor precisión la naturaleza, magnitud y fecha de los cambios ocurridos, se acometió el análisis de tendencia de las series de las variables y sus probables puntos de cambio. Para ello fue necesario agrupar los meses según las temporadas climáticas conocidas y en el plazo anual. En las Figs. 5 y 6 se
muestran ejemplos gráficos de la técnica empleada, mientras que en la Tabla 2 se resumen los resultados más significativos por variables.

La evidencia estadística de la ocurrencia de estas variaciones en las variables, años y estaciones involucrados, no es suficiente para probar la existencia de un cambio en el clima local. Se impone un acercamiento a la causa primaria de las variaciones, pues ellas pueden obedecer a cambios en los métodos de observación, traslado de lugar del emplazamiento meteorológico, variaciones en su entorno inmediato, o estar asociados a las tendencias climáticas globales prevalecientes, o a la modificación de otros factores naturales no climáticos. A escala local, el esclarecimiento de los agentes causales es generalmente más sencillo, pues se puede conocer con mayor nivel de detalle la evolución del medio ambiente en la zona, y evaluar sus posibles impactos en la marcha de los elementos del clima.

En el presente caso, se asumió que las variaciones registradas en las variables meteorológicas de la zona respondían sólo a tendencias climáticas locales, regionales o globales, debido a la constancia del resto de los factores que pudieran introducir ruido en las series. Se exceptúa a la estación meteorológica de Batabanó, ubicada en 1865 – 1866, cuyo efecto tiene incidencia, en mayor o menor grado, sobre el comportamiento de las variables analizadas.

A escala global, son bien conocidas las variaciones más relevantes ocurridas en el clima, dada su vinculación con el tema del cambio climático mundial.

En general, se asocian al aumento de la temperatura media global, incremento del nivel medio del mar, cambio del régimen de precipitaciones en extensas regiones terrestres, así como a variaciones sustanciales de la circulación atmosférica regional (IPCC, 1992).

En el ámbito regional, resultados científicos recientes apuntan a que en el período posterior a 1970 el clima de Cuba ha transitado hacia un estado climático con características similares a las proyecciones realizadas por el Panel Intergubernamental de Expertos sobre Cambio Climático (IPCC) para una atmósfera con efecto de invernadero intensificado (Centella et al., 1997).

Estas variaciones se relacionan con el incremento de la temperatura superficial del aire (sobre todo en el verano), de las temperaturas mínimas, de las grandes precipitaciones, de las lluvias invernales, del poder destructivo de las tormentas severas y de la actividad ciclónica en el Atlántico; se ha reportado una mayor frecuencia de eventos de sequías severas, una reducción de la afectación de ciclones tropicales y una disminución de la formación de ciclones en el área del Caribe.

A continuación, se compararán las tendencias y puntos de cambio de cada variable climática en la unidad en estudio, con aquellos presentes a escala regional (Casablanca), y se discute acerca de su posible asociación con la construcción del DSH.

Tabla 1: Comportamiento de las variables climáticas en la zona del DSH.

<table>
<thead>
<tr>
<th>Variable climática</th>
<th>Línea base de la zona del DSH</th>
<th>Variaciones del período 1986 – 1997 respecto a la línea base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiación solar global</td>
<td>Media anual: 18.0 MJ/m², por día (0.8 MJ/m² inferior a la media anual); Acumulado anual: 6.570 MJ/m².</td>
<td>No se observan diferencias.</td>
</tr>
<tr>
<td>Inisolación</td>
<td>Media anual: 7.7 horas (63% de insolación relativa); Total anual: 2.800 horas.</td>
<td>No se observan diferencias.</td>
</tr>
<tr>
<td>Temperatura del aire</td>
<td>Temperatura media: valores máximos en julio y agosto (de 26.0 a 28.0°C); máximos en enero y febrero (de 20.0 a 22.0°C).</td>
<td>Temperatura máxima media: aumento en 0.6 – 0.8°C con respecto a la media anual. Temperatura mínima media: aumento en 0.1 – 0.2°C con respecto a la media anual, excepto en Batabanó, donde disminuyó en 0.6°C.</td>
</tr>
<tr>
<td>Humedad relativa del aire</td>
<td>Máximos: invierno (80% – 85%); mínimo: abril (75%).</td>
<td>Ligero incremento, más notable en Batabanó en los meses más cálidos.</td>
</tr>
<tr>
<td>Tensión de vapor del agua</td>
<td>Máximos: en verano (21.0 – 22.0 mm); mínimo: en invierno (16.0 – 16.0 mm).</td>
<td>No se observan diferencias.</td>
</tr>
<tr>
<td>Viento</td>
<td>Baja velocidad media (inferior a 12 Km/h); máximos: marzo y abril.</td>
<td>Disminución de los valores medios.</td>
</tr>
<tr>
<td>Precipitaciones</td>
<td>Aumento regular desde la costa sur hacia el centro de las provincias habaneras (1.400 mm).</td>
<td>Totales de precipitación: aumento en todas las estaciones, excepto Guáimaro. Días con precipitación: aumento en todas las estaciones, excepto Batabanó.</td>
</tr>
<tr>
<td>Días con tormentas</td>
<td>Media anual: 24 días (agosto en Guáimaro).</td>
<td>Aumento fundamentalmente en la temporada lluviosa.</td>
</tr>
</tbody>
</table>

96 REVISTA CUBANA DE METEOROLOGÍA / Vol. 11/ No. 1/ 2004
Fig. 3. Curvas de doble masa de los valores medios mensuales de la oscilación térmica diaria (1974 – 1997). Estación de referencia: Santiago de las Vegas. Estación problema: Batabanó.

Fig. 4. Curvas de doble masa de la cantidad mensual de días con tormenta (1974 – 1997). Estación de referencia: Santiago de las Vegas. Estación problema: Guíra de Melena.

Fig. 5 Estadigrafo de Mann - Kendall para el número de días con precipitación en la temporada lluviosa. Estación meteorológica de Melena del Sur

Fig. 6 Estadigrafo de Pettitt para el número de días con precipitación en la temporada lluviosa. Estación meteorológica Melena del Sur.

Temperatura mínima media (TN):

En general, las tendencias en el sur de La Habana son similares a las que se vienen presentando en Casablanca, o sea, al incremento de la variable, aún cuando son menos marcadas. Se destaca el comportamiento contrario de Batabanó, con tendencias decrecientes significativas al 10 %, tanto en verano como en invierno. Es precisamente en dicha estación donde único se reportan puntos de cambio de tendencia en la TN, en el año 1985, coincidiendo con su reubicación lejos de la costa. Este hecho explica también por qué sólo Batabanó exhibe alteraciones en los gráficos de las curvas de doble masa de la TN, al compararla con Santiago de las Vegas.

Oscilación térmica diaria media (OTD):

A diferencia de Casablanca, donde las tendencias son de poca significación, en la porción meridional de La Habana prevalece el incremento de la variable, significativo en Batabanó (en las temporadas de invierno y verano), en Guíra (en el verano) y en Guines (en verano y la anual). En cuanto a los puntos de cambio significativos, en la zona se produjeron variaciones importantes en la OTD entre el inicio y la mitad de la década del 80, no vinculados en absoluto con la influencia del Dique Sur. Sin embargo, en Batabanó prevalece el efecto del traslado de la estación por encima de cualquier otro factor.

Totales de precipitación (TP):

En la zona en estudio se refuerzan las tendencias generales de la región (incremento no significativo de las precipitaciones), alcanzándose significación estadística en Batabanó durante la temporada lluviosa (al 10%). Los puntos de cambio en la misma se enmarcan en el año 1989, después de la construcción del Dique Sur, resultando más significativos que los causados por su reubicación como emplazamiento.
meteorológico. Para Melena del Sur se identificó un cambio en la serie de totales de lluvia a mediados de la década del 80. Contradictoriamente, en Güines se presentan tendencias a la disminución de los TP en la temporada lluviosa, y a su incremento en la poca lluviosa, aún cuando no presenta puntos de cambio de significación. No se pudo precisar si esta peculiaridad tiene relación o no con la puesta en funcionamiento del DSH.

Número de días con lluvia (DLL):

En la localidad se manifiestan tendencias significativas al incremento del DLL, aunque sólo en las estaciones más cercanas al Dique (Melena del Sur y Batabanó). Güira de Melena, en contraste, presenta un comportamiento similar al de Casablanca, o sea, un aumento no significativo en la tendencia de la variable. Los puntos de cambio se ubican entre los años 1987 - 1988 para Melena del Sur; y en 1985 para Batabanó (traslado de la estación).

Número de días con tormenta (DT):

En la zona investigada, y en especial en Melena del Sur, se refuerzan las tendencias al crecimiento del DT, predominantes a escala regional. Resulta interesante la aparición de puntos de cambio significativos en Batabanó y Melena del Sur en el periodo posterior a la edificación del Dique, entre los años 1987 - 1990. El efecto de la reubicación de Batabanó quedó borrado en esta oportunidad, ante el aumento real de DT que se produjo allí a fines de los 80, todo lo cual coincide con los resultados del análisis de las curvas de doble masa.

Humedad relativa (HR):

En el territorio han dominado procesos de aumento en la tendencia de la HR. En el plazo anual, el incremento ha sido más significativo, extendiéndose a todas las temporadas en Batabanó. En las series de la variable aparecen puntos de cambio en Melena del Sur y Güira, sin relación posible con la construcción de Dique. En Batabanó, el punto de cambio se ubica nuevamente en 1985/86.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Temporadas</th>
<th>Tendencias de las variables</th>
<th>Puntos de cambio (año)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Batabanó</td>
<td>Güines</td>
</tr>
<tr>
<td>Temperatura mínima media</td>
<td>Anual</td>
<td>ns* (1)</td>
<td>ns*</td>
</tr>
<tr>
<td>Oscilación térmica diaria</td>
<td>Anual</td>
<td>ns* (1)</td>
<td>ns*</td>
</tr>
<tr>
<td>Totales de precipitación</td>
<td>Anual</td>
<td>ns*</td>
<td>ns*</td>
</tr>
<tr>
<td></td>
<td>Poco lluviosa</td>
<td>ns*</td>
<td>ns*</td>
</tr>
<tr>
<td>Número de días con precipitación</td>
<td>Anual</td>
<td>ns*</td>
<td>ns*</td>
</tr>
<tr>
<td></td>
<td>Poco lluviosa</td>
<td>ns*</td>
<td>ns*</td>
</tr>
<tr>
<td>Número de días con tormenta</td>
<td>Anual</td>
<td>ns*</td>
<td>ns*</td>
</tr>
<tr>
<td></td>
<td>Poco lluviosa</td>
<td>ns*</td>
<td>ns*</td>
</tr>
<tr>
<td>Humedad relativa</td>
<td>Anual</td>
<td>ns*</td>
<td>ns*</td>
</tr>
<tr>
<td></td>
<td>Poco lluviosa</td>
<td>ns*</td>
<td>ns*</td>
</tr>
</tbody>
</table>

Leyenda:
- as: tendencia significativa
- 10%: tendencia significativa en el nivel de significación de 0.10
- ns* (1): tendencia no significativa en el nivel de significación de 0.10
- ns: tendencia no significativa
- 10%*: sin tendencia
- ↓↑: sentido de la tendencia (decresciente o creciente)
- en blanco: sin punto de cambio
- **:** no analizado
En síntesis, existen elementos a favor de la identificación del Dique Sur como posible causa de los cambios detectados en el clima de la zona. Ellos son:

1. Las variables que reportan variación están dentro de las que tradicionalmente muestran una mayor dependencia de factores locales (totales de lluvia, días con tormenta, etc.).

2. Las estaciones meteorológicas de Batabanó y Melena del Sur, las más cercanas al Dique, son las que presentan puntos de cambio significativos en la tendencia de esas variables.

3. En su inmensa mayoría, los puntos de cambio se dan posteriormente a la fecha de inicio de la edificación del Dique para algunas de esas variables, constatándose así la consistencia de los mismos.

Sin embargo, existen razones que ponen en duda la hipótesis anterior, como son:

1. En gran parte de los casos, las tendencias significativas al aumento de las variables señaladas sólo refuerzan aquellas ya presentes a una escala macroclimática.

2. Desde el punto de vista meteorológico, en este momento no existe una explicación coherente ni convincente de cómo pudo producirse el incremento en los valores de las variables que cambian, presumiblemente por la influencia del Dique Sur. Las hipótesis más extendidas sólo aluden a una mayor disponibilidad de humedad en el territorio, a cuenta del agua retenida por el Dique, en su avance hacia el mar.

3. El Dique Sur se extiende desde las inmediaciones de Surgidero de Batabanó hasta Playa Majana (Fig.2); y las estaciones de Batabanó y Melena del Sur (las que más varían) se encuentran en el extremo oriental del mismo, corriente arriba de los flujos predominantes en la región. Así, aquellas pudieran reflejar más las tendencias regionales del clima y no tanto lo que está ocurriendo en el área más afectada por el Dique.

Conclusiones.

1. Las variaciones observadas en el clima del área estudiada, atribuidas o no a la influencia del DSH, alcanzan ya tales magnitudes que pueden detectarse con el uso de métodos climatológicos clásicos, como los utilizados aquí.

2. Tanto el análisis de las curvas de doble masa como de las tendencias y los puntos de cambio de las series seleccionadas indican incrementos generales del TP, DLL y DT en la zona adyacente al DSH, algunos con una alta significación estadística. Después de 1986, estos cambios son más notables en las estaciones meteorológicas más próximas al Dique (Batabanó y Melena del Sur).

3. Aunque la atribución al DSH de las variaciones climáticas señaladas no queda plenamente establecida, argumentos tales como la mayor cercanía a la obra de las estaciones meteorológicas que registran los cambios más significativos, la conocida dependencia de factores locales de las variables que más se modifican, así como la agrupación de puntos de cambio de significación en años posteriores a su edificación, apuntan al posible impacto del Dique en las condiciones climáticas del Sur de la provincia de La Habana.

Referencias bibliográficas:

IPCC. Cambio Climático. Evaluación científica del IPCC. Patrocinado por OMM y PNUMA, 1992

MITRANI, I. et al. The coastal floods in the Cuban territory, the most sensitive area and the possible impact on the climate change. Centre of International Science. International network at the Columbian University, 2000.

Abstract:

The water storage system known as South Dyke of Havana (SDH) is a hydrotechnical construction that has been associated to impacts detected in the surrounding ecosystem. In this paper, the influence of SDH on the behavior of climate in the surrounding territory is analyzed. The results obtained using statistical methods applied to data of several variables show the probable effects of SDH in local climate, though known regional and global trends are also present.

Key words: impact, local climate variability, point of change, trends.